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Abstract
This paper describes a novel approach for the control of underwater robots that can handle uncertainties and disturbance
problems, which are commonly met in underwater environments. The considered system is an underwater manipulator with
n-degrees of freedom. The approximation capability of an adaptive neural network is exploited to estimate uncertainties
in system dynamics. Drag and lift forces are considered as an external disturbance, and a disturbance observer approach
which has been proved to be effective with on-land robotic systems, is applied to compensate for it. The objective of the
controller designed is to track a desired trajectory. To find the optimal gain parameters of this controller, a classical Genetic
Algorithm is employed. Extensive simulation studies carried out on a two degrees of freedom manipulator indicate the
efficacy of the proposed approach, proving that the disturbance observer originally developed for on-land systems can also
be used effectively for underwater robotic systems. Finally, the performance of the proposed controller, tuned by the Genetic
Algorithm is compared with that of a controller, tuned manually. The results show that the reliance on a well-known classic
Genetic Algorithm for the tuning of the controller parameters not only saves time, but also provides better values of the
parameters.

Keywords Control design · Underwater robots · Adaptive neural network · Drag force · Genetic algorithm ·
Disturbance observer

1 Introduction

Recently, underwater world has been in the forefront for
many researchers. Tasks such as exploration of underwater
resources, maintaining underwater equipment, investigation
of sunken ships and submarines, and many other underwater
manipulation tasks have become important research issues.
Since the underwater world can be perilous for human
beings, underwater robotic manipulators are being increas-
ingly used in a greater number of tasks, and many control
strategies have been developed to control robotic manipu-
lators [1]. However, the accomplishment of an underwater
manipulating task in an accurate manner requires accurate
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system dynamics. In fact, dynamic modeling of underwa-
ter robotic systems is more complicated than that of on-land
robotic systems [2–4]. Additionally, there exist a higher
level of uncertainties in underwater robotic systems, due to
the extra forces exerted by water, such as added mass and
moment of inertia, buoyancy, drag force, etc. Most of them
depend on the relative velocity and acceleration between
water and manipulator.

In practice, the dynamic models of robotic manipulators,
and of all other physical systems, will always suffer
from some uncertainties. These are due to inaccurate
information on physical parameters, interaction with the
surrounding environment, and such effects. Therefore the
dynamics of a manipulator that include moment of inertia,
gravitational and centrifugal and coriolis matrices may
be known only partially [5]. Uncertainties can be of
two types; parametric uncertainties and non-parametric
uncertainties. Both are studied widely in literature. In
[6], authors design a model-free adaptive controller for
linear systems considering both parametric and internal-
external non-parametric uncertainties. In [7], authors design
and analyse an adaptive estimator for an unknown linear
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system, by depending on the noisy states and control
signal. In [8], authors design and carry out an identification
scheme of the model of 6-DOF upper limb of a humanoid
robot. In this paper, we use a NN to approximate
the parametric uncertainties while a DO is used to
approximate the nonparametric uncertainties with added
external disturbance.

Neural Networks (NNs) have long been used as a
powerful tool in control of nonlinear systems [9–13], due
to their abilities, such as the ability to learn [14–17] and
the ability to approximate any continuous function with a
reasonable error as in [18–22]. The ability of approximation
is exploited in the field of control design to handle the
unknown part in system model under different operating
conditions [5, 23–25]. Authors in [24] consider a case of
a full-state feedback with time-varying output constraints,
and use the adaptive NN for the same purpose. Authors
in [26, 27] design and control a tethered space robot in
order to use it for space debris cleaning mission, they use a
NN to compensate for system’s uncertainties. However, all
of the referenced works are meant to handle the dynamics
uncertainties of on-land manipulators, while not much can
be seen in literature that consider the uncertainty problems
in underwater robotic systems. In the few works that are
available, a variety of approaches are suggested, such as
indirect adaptive control to control the underwater vehicle-
manipulator [28], fuzzy control [29], and sliding mode
control [30–32]. In [32], a NN is used to reduce the distance
between the sliding surface and the current state. The
work reported in this paper distinguishes itself from the
referenced ones by handling a higher degree of uncertainties
caused by underwater environment.

In addition to the problem of uncertainties, robotic
systems are subject to external disturbances, which are
mostly unknown and unexpected [33, 34], especially in
underwater environment. The technique of disturbance
observer (DO) has widely been used to compensate this
kind of disturbance [24, 35]. However, there exists a
number of works in the literature that considers this
technique as a candidate to solve the disturbance problem
in underwater environment. Authors in [36] design a
sliding mode controller for underwater vehicle based on a
backstepping technique. They design a DO to compensate
for the uncertainties in system dynamics and the external
disturbance together. However, they ignore the uncertainties
that exist in the moment of inertia matrix and design their
DO based on that matrix. In [37], a sliding mode controller
is designed for autonomous underwater vehicles, while a
DO is designed to compensate for the unknown model
parameters and disturbances. In [38], an integral sliding
mode controller is designed for underwater robot vehicle
based on a state observer. The external disturbance and the
unmeasured velocity are considered as extended state. In

this paper, we show that the DO described in [24] can be
used effectively for underwater disturbances approximation.

To our knowledge, there is no work reported in literature
that uses a NN controller with a DO as a method to handle
the uncertainties and the disturbances that underwater
manipulators may be subject to.

During the literature survey process of our work, we
have noted that most research in the field of control
design discuss the design process without presenting a
clear explanation of how the parameters of the controller
designed are tuned, because they can be set manually
and get reasonable performance. However, manual-tuning
process may take a long time. Furthermore, the resulting
performance may be acceptable but still far from the
optimal. That has inspired us to use an intelligent method
to tune our controller. The use of an evolutionary algorithm,
especially a Genetic Algorithm (GA) is a good solution for
that. GA basically is a search-based optimization method,
which depends on the principle of genetics and natural
selection. Due to its properties, GA is used frequently to find
the optimal solution of many problems. Path planning is one
of its applications[10, 39, 40]. It has been applied in [40]
to find the shortest possible and collision free path while
considering a safety parameter. GA has been used in [41] to
tune the parameters of the proportional integral derivative
(PID) controller, which is designed to control a bidirectional
inductive power transfer system. It is also used with a Multi-
input-Multi-output (MIMO) system in [42] to optimize the
controller designed. GA can widely be seen in underwater
robotic systems too. Authors in [43] use GA as a task-based
design method, where they develop a suitable propulsion
configuration for autonomous underwater vehicles (AUVs)
and tune the control parameters of the propulsion system.
Some research has been done to prove the superiority of GA
as in [44].

The robot considered in this work (Fig. 1) is an n-
link manipulator with uncertain system dynamics. For the
accomplishment of an underwater manipulating task, it is
suggested that an adaptive NN-based controller is used,
which is an adapted version of the controller designed in
[20]. A DO compensates for drag and lift forces as well as
external friction. Although, it is possible to employ a NN to
approximate them, we chose to use a DO for two reasons:

– To simplify the NN used for approximation, because
simpler functions can be approximated satisfactorily
using simpler NN.

– The designed DO can also compensate for the external
unknown disturbances, which are very likely to occur
during underwater manipulating tasks.

In order to guarantee near-optimal performance, the
controller parameters are tuned by a GA. The efficiency
of the designed controller and the justification for the use
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Fig. 1 The n-DOF manipulator considered

of a GA for tuning are demonstrated by MATLAB based
simulation studies.

The contributions of this work include:

– An efficient controller is proposed for an n-DOF
underwater robotic manipulator. It is based on an
adaptive NN and a DO.

– It is proved that the DO used for on-land manipulators
also works with underwater robots to compensate for
the external forces, such as drag, lift and external
friction.

– The parameters of the designed controller are tuned
using GA. The advantages of GA-based tuning over
manual tuning are shown by simulation studies.

The rest of this paper is organized like this: the problem for-
mulation and system dynamics are explained in Section 2.
In Section 3, the controller is designed, and the system sta-
bility is proved. The designed GA steps are illustrated in
Section 4. Simulation environment and results are presented
in Section 5. Finally, an assessment of the work is given in
Section 6.

2 Problem Formulation

The control problem of an uncertain n-degrees of freedom
robotic manipulator, operating in a water stream is discussed
in this paper. The system considered is shown in Fig. 1. It
can be represented as a MIMO nonlinear system.

The dynamics of underwater robot manipulators are one
of the most complicated dynamics. Once such manipulators
are underwater, they face numerous forces that significantly
change the dynamics of the system from what they are on
land [45]. Below is a brief explanation of those forces:

1. Buoyancy and earth gravity: The effect of these on
the robotic manipulator are opposite to each other.
Buoyancy equals to the water mass displaced by the

rigid body. It can be calculated by the following
equation [46]:

β = ρgV = bg (1)

where b = ρV , ρ is the water density, V is the volume
of displaced water, which is equal to the volume of
immersed rigid body, g is the earth gravity, its value
changes with the depth underwater.

2. Added mass and moment of inertia: These forces can
reach significant levels when an immersed object has to
shift (or deflect) some water as it moves through it. It is
hard to calculate it. These forces depend on the shape of
the moving object. For simplicity, they are considered
as a volume of water moving with the body. This
assumption adds to other model-system mismatches.

3. Internal friction force: This is due to the friction in the
joints and can be neglected when compared to other
resistant forces.

4. Drag force and external friction: These are due to the
difference between the speed of the water flow and
the robot speed when the manipulator moves in water.
The effect of the external friction force caused by
water is included in the drag force equation through its
coefficient. In both deep or shallow water, it is found
that it can be expressed like in Morison’s equation [47]:

fDrag = 1

2
ρACd‖v‖2 (2)

where ρ is water density, A is the cross sectional area
projected normally to the direction of motion, v is the
relative velocity of robot vr to water speed vw,

v = vr − vw (3)

Cd in Eq. 2 represents the drag coefficient. It reflects
the impact of shape, texture, viscosity (which results
in viscous drag or skin friction), compressibility and
lift (which causes induced drag). Drag coefficient is
very hard to determine, especially for not cylindrical
shape. It may be obtained experimentally [48, 49] or
determined as a function of Reynold number [50].

The dynamics of underwater robotic system of the n-degrees
of freedom manipulator is modeled as in the following
equation:

M(φ)φ̈ + C(φ, φ̇)φ̇ + G(φ) = τ − fdes(t) (4)

where:

– φ is (n × 1) vector that represents the angular position
of n joints.

– φ̇ , φ̈ are (n × 1) vectors of velocity and acceleration,
respectively.

– M is an (n × n) matrix. It represents the inertia matrix
including the added mass and the added moment of
inertia. It satisfies the symmetric positive properties.
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– C is an (n × n) matrix. It represents the coriolis and
centrifugal matrix of n-DOF manipulator, including the
added coriolis and centrifugal forces.

– G is a vector of n elements. It represents the gravity
forces and the buoyancy effects.

– fdes represents the unknown external disturbance which
basically cosed by the hydraulic drag and lift forces in
the underwater environment. It also includes the friction
due to the water flow.

– τ is the vector of applied joint torques, which actually
are the control inputs. It contains n elements.

3 Control Design

The uncertainties in the considered system are parametric
uncertainties which exist in any realistic system, due to
the manufacturing process and associated with the system
parameters such as mass density, geometric parameters,
etc. And nonparametric uncertainties due to the lack of
knowledge regarding the system. In this work, we use an
adaptive NN to approximate the parametric uncertainties.
Drag and lift forces are considered as an unknown
disturbance from the external environment, and estimated
by a DO. The DO is used to estimate the non-parametric
uncertainties too.

Figure 2 shows the control strategy.
The system can be described in terms of the state

variables as follows:

ẋ1 = x2 (5)

ẋ2 = M−1(x1) [τ − C(x1, x2)x2 − G(x1) − fdis] (6)

where x1 = φ and x2 = φ̇ are the state variables and fdis

is the external disturbance. In this paper, the state variables
x1 and x2 are assumed to be known in full, (i.e. the case of
full state feedback). The required task is tracking the desired

trajectory xd = φd = [φd1, φd2, . . . , φdn]T . The tracking
error will be:

e1(t) = x1(t) − xd(t) (7)

We design another control variable α(t) related to the
tracking error and the velocity. It is designed as in the
following equation:

α(t) = −K1e1(t) + ẋd (t) (8)

where K1 is the gain matrix, which is asymmetric positive
matrix. We define the second error as follows:

e2(t) = x2(t) − α(t) = .
x1(t) − α(t) (9)

and the time derivative of e2(t) is

ė2 = M−1(x1) [τ − C(x1, x2)x2 − G(x1) − fdis]− α̇ (10)

The unknown parts of the system dynamics are M(x1),
C(x1, x2) and G(x1). Let us assume that M and C matrices
consist of two parts, a known part Mc(x1) and Cc(x1, x2),
respectively, and an unknown part�M(x1) and�C(x1, x2),
respectively. Then M(x1) = Mc(x1)+�M(x1) and Mc(x1)

should be skew symmetric and positive definite matrix.
C(x1, x2) = Cc(x1, x2) + �C(x1, x2), and Cc(x1, x2)

is designed to satisfy that Ṁc(x1) − 2Cc(x1, x2) is a
skew symmetric matrix. In the rest of this paper, we will
use the following denotation: Mc represents Mc(x1), �M

represents �M(x1), Cc represents Cc(x1, x2), and �C

represents �C(x1, x2). Thus, Eq. 10 can be written as:

ė2 = M−1
c (x1) [τ − M(x1)α̇ − �M(x1)ė2 − G(x1)

−fdis − Cc(x1, x2)x2 − �Cx2] (11)

Then the NN WT �(h) is used to approximate the
uncertainties as follows:

WT �(h) = M(x1)α̇ +�Mė2 +�C(x1, x2)x2 +G(x1)− δ

(12)

where δ is the approximation error, h = [φT , φ̇T , αT , α̇T ]
is the input to the NN, and �(h) is the radial basis function

Fig. 2 The control strategy
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which is used as an activation function of the NN. It is
shown in the following equation.

�i(h) = exp

[
−(h − oi)

T (h − oi)

μ2
i

]
(13)

where oi is the center of the function, and μ is the variance.
Let the NN ŴT �(h) be the estimation of WT �(h). The
adaptive law of the NN proposed in Eq. 12 is designed as:

˙̂
W = −ψi

[
�i(h)e2,i + γi |e2,i |Ŵi

]
, i = 1, 2, ..., N (14)

where N represents the number of nodes in the hidden layer
of the NN, ψi is a positive gain, γi is a small positive
constant.

Proposition 1 [24, 51] Considering the adaptive law (14),
˙̂

Wi is bounded. In other words, there is a positive constant
εi > 0, where ‖�i(h)‖ ≤ εi , then ‖Ŵ‖ ≤ εi

γi
, as proved in

[52].

Substitution of Eqs. 12 in 11 results in the following:

ė2 = M−1
c

[
τ − Ccx2 − WT �(h) − δ − fdis

]
(15)

Let us consider this error δ as an extra source of disturbance
and combine it together with the external source, the total
disturbance is:

fT = fdis + δ (16)

Lemma 1 [24]: Let F(x) be a continually differentiable
function over [0, ∞). If F(x) is bounded then Ḟ (x) is
bounded over [0, ∞), which means there is a positive
constant χ > 0 where |F(x)| ≤ χ,∀x ∈ [0, ∞) then
|Ḟ (x)| is bounded ∀x ∈ [0, ∞).

The drag and external friction forces are bounded,
because they are caused by the difference between water
speed and the robot speed and both velocities can not
be infinite. In addition, these forces are function of The
designed NN approximation error δ is also bounded based
on Proposition 1 and Eq. 12. Thus, the disturbance is
bounded. In addition, the drag and external friction forces
are a function of the square of the difference between the
velocities of the manipulator and the water flow, as in Eq. 2.
Since both velocities are continuous and differentiable, then
Drag force is continuous and differentiable, consequently,
the disturbance is continuous and differentiable. According
to Lemma 1, there is a positive constant ξ where ‖ḟT ‖ ≤ ξ .
In order to compensate for disturbance, the DO, which is
proposed in [24], is applied. Let us define the disturbance
estimation error as follows:

e3 = fT + �(e2) (17)

where�(e2) is a linear function of e2 which can be designed
easily to ensure that

∂�(e2)

∂e2
= B (18)

where B is a positive constant. The estimated disturbance is:

f̂T = ê3 − �(e2) (19)

where ê3 is the estimation of e3. Since the velocity is
available as a feedback signal, then e2 is known. Hence, the
disturbance can be estimated if there is a convenient way to
establish ê3. Let us design ê3 as follows:

˙̂e3 = BM−1
c (τ − Ccx2 − f̂T ) (20)

It is clear that:

˙̃
fT = ˙̃e3 = BM−1

c

(
−f̃T + W�(h)

)
− ḟT (21)

The input torque is:

τ = −e1 − K2e2 + Ccα + ŴT �(h) + f̂T (22)

Lyapunov theory has proved itself as an effective method
to prove the stability of nonlinear systems, it has been used
widely for that purpose [53–56]. The stability of this system
also can be proved by using the Lyapunov second theory.
Let us consider the following Lyapunov function:

V = 1

2
eT
1 e1+ 1

2
eT
2 Mce2+ 1

2
f̃ T

T f̃T + 1

2

N∑
i=1

W̃T
i ψ−1

i W̃i (23)

where W̃i = Ŵi − Wi is the error in the adapted NN
weights, f̃T = f̂T − fT is the disturbance estimation error.
For the underwater robotic manipulator system defined by
the dynamics (4), with uncertain system dynamics under
bounded initial conditions and the control law in Eq. 14, the
error signals e1, e2, f̃T and W̃ are bounded over compact
sets �e1 , �e2 , �fT

and �W , respectively. The compact sets
are defined as follows:

�e1 :=
{
e1 ∈ R

n|‖e1‖ ≤ √
S
}

(24)

�e2 :=
{

e2 ∈ R
n|‖e2‖ ≤

√
S

λmin(M)

}
(25)

�fT
:=

{
f̃T ∈ R

n|‖f̃T ‖ ≤ √
S
}

(26)

�W :=
{

W̃ ∈ R
N×n|‖W̃‖ ≤

√
S

λmin(ψ−1)

}
(27)

In above S = 2

(
V (0) − b

a

)
, where a and b are

two positive numbers defined by Eq. 54 in Appendix.
λmax(A) and λmin(A) represent the maximum and minimum
eigenvalues of matrix A, respectively.
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Fig. 3 Representation of the
parameters to be optimized in
the chromosomes of GA

Thus, the handled system described by the dynamics in
Eq. 4 with full-state feedback under the designed controller
is stable for every bounded initial conditions. the proof
clarified in Appendix.

4 Tuning the Parameters of the Controller
by a Genetic Algorithm

An optimal controller is extremely desirable [57] in control
systems. In this work, GA is used to optimize the proposed
controller. The implementation of the controller proposed in
Eq. 22, requires the tuning of the adaptive NN parameters
proposed in Eq. 14, in addition to the DO parameter B and
the control variable α. In other words, the variables K1, K2,
ψ , γi , μ and B need to be tuned. In order to guarantee a
high performance with minimum tracking error, a method
should be used to arrive at the optimal parameters as closely
as possible. The use of a GA is known to be effective in
this domain. The details of the GA designed are described
in what follows, assuming that the basics are already known
by the reader.

Solution Representation The solution is a GA chromosome
that contains the scalers Gk1, Gk2, Gψ , Gγi , Gμ and GB.
They are used to set the variables mentioned above. Every
scaler is represented by a string of binary bits as shown in
Fig. 3. The length of this string should be chosen according
to the solution space. In our case, we choose 9 bits for every
scaler. The genotype is created by encoding every variable
by the use of gray coding method. Gray coding is useful
to avoid the undesired results of mutation and crossover
process.

After finding optimal values of those scalers, they are
used to set the parameters of the related control law as
follows: K1 = Gk1In×n, K2 = Gk2In×n, ψ = GψIN×N ,
γi = Gγi , μ = Gμ and B = GB.

The steps of the tuning procedure are shown in the GA
flow chart in Fig. 4.

Initial Population The initial population is created ran-
domly as integer numbers between [0, 512] to guarantee the
required positivity, then in-coded using gray code. However,
the value of γi should be less than one, so the randomly
created numbers are divided by 513 to get suitable values.

Fitness Function The goal of this algorithm is to minimize
the tracking error of all links. Since the tracking error of φn

must be small as possible (because link n affects the end-
effector position directly), we consider it twice in the fitness
function. Thus the fitness function of every possible solution
j is set to be like:

f itj = 2en
1 +

i=n−1∑
i=1

(ei
1) +

i=n∑
i=1

f̃ i
T (28)

Fig. 4 GA flow chart
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where ei
1 is the largest tracking error of link i calculated

during the last 10 seconds of the simulation, f̃ i
T is the

approximation errors of the DO for link i. Thus the solution
is: Sol = min(f itj ), j = 1, 2, . . . , population size.

Selection of Parents The next phase of GA is to select the
parents of the next generation members. The tournament
selection method is applied here. Two groups of chromo-
somes are created. The members of every group are chosen
from the current population at random. Then, the chromo-
some with the best fitness value in the group is chosen to
be a parent (elitism). Such a method encourages the highly
fit individuals to be chosen. The new offspring is yielded by
applying crossover and mutation operations on the selected
parents.

Crossover Process The crossover process involves transfer-
ring some parts between the two parents to create two new
chromosomes. We choose to use the multi-points crossover
method. Three cros-sover points are chosen such that every
chromosome are divided into 4 parts, and the crossover
process swaps the first and the third quarters between the
parents to result in two new chromosomes. Every new chro-
mosome is tested against the control design conditions to
guarantee that we do not get a singularity of matrix M

during the tracking mission. If it violates a condition, it
is rejected, and a new chromosome is created randomly.
This creation and testing process is repeated until the newly
created chromosome satisfies all conditions. The selection
and the crossover processes are repeated over the whole
population.

Mutation For every chromosome in the new population, a
random number between [0,1] is created. If this number is
smaller than the chosen mutation probability, then a random
bit is flipped. The resulting chromosome is also tested
against the control design conditions.

Termination method The steps described above are
repeated until a predefined iteration number is reached. The
approach known as elitism is used, i.e. the best chromosome
of a population is kept until a chromosome with a better
fitness value is created. Finally the best solution is used in
the designed controller. In practice, there is more than one
way to terminate the process; the definition of a satisfac-
tory error threshold is one of them, the algorithm stops when
the desired error threshold is reached. However, in our par-
ticular case of application, no specific error levels can be
defined.

5 Simulation Studies

We consider the 2-DOF manipulator moving in the xy

plane. The manipulator is built of two links jointed by two
rotary joints. Both joints rotate around z axis. The position
of the wrist is derived by two rotations. Let mi and li be the
mass and the length of link i. The center of mass is located
at center of the link at lci distance from the previous joint.
Both links are cylindrical with radios Ri and length li . The
added mass mai of link i can be calculated based on the
following formula:

mai = ρπR2
i li (29)

The total mass of link i can be calculated as in [46]: mi =
mri + mai . Buoyancy can be calculated by Eq. 1.
We identify φ as:

φ =
[

φ1

φ2

]
⇒ φ̇ =

[
φ̇1

φ̇2

]

Using Lagrange equation, the dynamics of the 2-DOF
manipulator can be written as in Eq. 4, where:

M(φ) =
[

M11 M12

M21 M22

]
(30)

C(φ, φ̇) =
[

C11 C12

C21 0

]
(31)

G(φ) =
[

G1

G2

]
(32)

where:

M11=m1l
2
c1 + m2(l

2
1+l2c2+2l1lc2 cosφ2)+ 0.25m1l

2
1+0.25m2l

2
2 ,

M12 = M21 = m2(l
2
c2 + l1lc2 cosφ2) + 0.25m2l

2
2 ,

M22 = m2l
2
c2 + 0.25m2l

2
2 ,

C11 = −m2l1lc2φ̇2 sinφ2,

C12 = −m2l1lc2(φ̇1 + φ̇2) sinφ2,

C21 = m2l1lc2φ̇1 sinφ2,

G1 = g((m1 − b1)lc2 + (m2 − b2)l1) cosφ1 + (m2 − b2)lc2g

cos (φ1 + φ2),

G2 = (m1 − b1)lc2g cos(φ1 + φ2).

We design Mc = (sin(t)+2)I2×2 and Cc = (0.5 cos(t)+
1)I2×2. Such a design guarantees that Mc is positive definite
matrix and Ṁc − 2Cc is a skew symmetric matrix. For
simplicity in simulation, we assume that water flows along
the x axis in the local coordinate system. The water current
is assumed to be not rotational but lateral and flows in one
direction. In order to make this work more useful, the water
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Fig. 5 Water velocity

velocity is assumed to undergo a step change during the
simulation time, as shown in Fig. 5.

It is assumed to be flowing at a velocity of vw = 0.5
(m/s) when the simulation starts. In order to simulate nature,
we assume that around the 34th second, the robot faces a
sudden flow of water with a high speed; around 1.5 (m/s).
The water flow velocity follows the following model: vx

w =
0.5 + 1

1+e5(−t+34) .
The kinematics and the Jacobian matrices of link 1 and

link 2 can be found as follows:

P1 =
[

P11

P12

]
=

[
lc1 cosφ1

lc1 sinφ1

]
(33)

J1 =
[

J111 0
J121 0

]
=

[ −lc1 sinφ1 0
lc1 cosφ1 0

]
(34)

P2 =
[

P21

P22

]
=

[
l1 cosφ1 + lc2 cos(φ1 + φ2)

l1 sinφ1 + lc2 sin(φ1 + φ2)

]
(35)

J2 =
[

J211 J212
J221 J222

]

=
[ −lc1 sinφ1 + lc2 sin(φ1 + φ2) −lc2 sin(φ1 + φ2)

lc1 cosφ1 + lc2 cos(φ1 + φ2) lc2 cos(φ1 + φ2)

]
(36)

The linear velocity of link 1 and 2 can be computed as
follows:

vr1 =
[

vx
r1

v
y

r1

]
=

[
J111φ̇1

J121φ̇1

]
(37)

vr2 =
[

vx
r2

v
y

r2

]
=

[
J211φ̇1 + J212φ̇2

J221φ̇1 + J222φ̇2

]
(38)

The drag torque can be calculated as follows:

D(φ, φ̇) = 1

2
ρCd

[
d11 + d12

l1R1(d21 + d22)

]
(39)

where:
d11 = l1R1(J111(v

x
r1 − vx

w)2 + J121(v
y

r1 − v
y
w)2),

d12 = l2R2(J211v
x
r2) + J221(v

y

r2 − v
y
w)2,

Table 1 Parameters of the robotic manipulator [20]

Parameter Explanation Value

m1 Mass of link 1 2 kg

m2 Mass of link 2 0.85 kg

l1 Length of link 1 0.35 m

l2 Length of link 2 0.31 m

R1 Radius of link 1 0.1 m

R2 Radius of link 2 0.1 m

ma1 Added Mass of link 1 ρπR2
1 l1

ma2 Added Mass of link 2 ρπR2
2 l2

V1 Volume of link 1 πR2
1 l1

V2 Volume of link 2 πR2
2 l2

d21 = J212(v
x
r2 − vx

w)2,
d22 = J222(v

y

r2 − v
y
w)2).

The drag coefficient is set at Cd = 0.82. The parameters
of the manipulator are considered as in [20], and listed in
Table 1.

The desired trajectory is chosen to be a rotational motion
as φd1 = 3 sin(0.5t), φd2 = 3 cos(0.5t). The number
of nodes is chosen experimentally as N = 128. We have
considered the number of nodes used in [20, 24], where
a NN is used for the same purpose, we have tried the
same numbers in those references, going for the smallest
N because, the bigger N is the more complicated is the
structure of the NN, which may generate input delay due
to heavy computation, degrading the control. On the other
hand, a smaller N causes a higher approximation error and,
consequently, a higher tracking error.

The initial weights are set to Ŵ1,i = Ŵ2,i = 0, (i =
1, 2, . . . , 128) in the adaptive law. The simulation is run for
60 seconds.
The particular individualities of the GA are as follows:

– Every chromosome contains seven scalers as shown in
Fig. 3.

– Every scaler is represented by 9 bits.

Fig. 6 Convergence of the fitness value to the optimal one
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Fig. 7 Actual and desired
trajectories and the tracking
error of link 1

Fig. 8 Actual and desired
trajectories and the tracking
error of link 2

Fig. 9 External disturbance and
the DO approximation error of
link 1
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Fig. 10 External disturbance
and the DO approximation error
of link 2

Fig. 11 Control inputs of link 1
and 2
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Fig. 12 Tracking errors when
the parameters of the controller
are tuned by GA and manually
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Fig. 13 Disturbance estimation
errors when the parameters of
the controller are tuned by GA
and manually

– The population size set as: population size = 16.
– Number of iterations: iteration = 50 t imes.
– Mutation probability set as: mutation = 0.25.

The GA parameters values are set experimentally. However,
iteration number and population size should be chosen
as small as possible in order to save computing time.
The selection phase is accomplished using the tournament
selection method, where a group of 3 chromosomes are
chosen from the current population. The fittest chromosome
is the first parent. The same process is done to choose
the second parent. To find the fitness value of every
chromosome, a simulation using MATLAB is run for 60
seconds. The highest error value during the last 10 seconds
of the simulation is used to calculate the fitness value of
every chromosome.

f itj = max
t∈[50,60]

(
e11(t)

)
+ 2 max

t∈[50,60]

(
e21(t)

)
+ max

t∈[50,60]

(
f̃ 1

T (t)
)

+ max
t∈[50,60]

(
f̃ 2

T (t)
)

(40)

The optimal solution should satisfy the following:

f itoptimal = min
j=1..50

(f itj ) (41)

where j = 1, 2, . . . , 50 represents the iteration number.
Figure 6 shows that the fitness value converges to an

optimal value. Although the computational cost of this
method may be high, it is the best way to find the optimal
values of the control variables, because it tests every
possible solution and evaluates its fitness. In addition, it
will be used only one time at the beginning, so time is not
very important here. The designed GA gives the following
solution: GK1 = 1 then K1 = 1I2×2, GK2 = 19 then
K2 = 19I2×2, γ1 = Gγ1 = 0.5625, γ2 = Gγ2 = 0.0566
and Gψ = 470 then ψi = 470I128×128. μ = 47. B =
GB = 27. then �(e2) = 27e2.

Figures 7 and 8 show the tracking error of link 1 and link
2, respectively.

The maximum tracking error for link 1 in the last
10 seconds of simulation is maxt∈[50,60] e11(t) = 8.14×

Fig. 14 Input torques when the
parameters of the controller are
tuned by GA and manually
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Fig. 15 Tracking errors of the
PD controller and the proposed
controller for link 1
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10−4rad , for link 2, the maximum tracking error is
maxt∈[50,60] e21(t) = 8.24 × 10−4rad . It is clear that the
tracking errors are bounded at very small values. It indicates
that the drag forces are compensated successfully by the
designed DO. It is clear that DO can track the changes in the
drag force with a small error, as it is seen in Figs. 9 and 10.
As can be seen from Fig. 11, the input torques do not exceed
7.5 Nm for Joint 1 and 1.5 Nm for Joint 2, which are not
beyond the limits of the joint actuators.

In order to show the benefits of using a GA to tune the
parameters of the controller, a comparison study between a
controller tuned by the GA and one that is tuned manually
is done. During manual tuning process, if the designer is
lucky to come close to the optimal values of the parameters,
he may end up with the following values for the parameters:
K1 = 5I2×2, K2 = 20I2×2, γ1 = 0.5, γ2 = 0.05 and ψ =
400I128×128. The μ = 40. B = 20. then �(e2) = 20e2.

Figure 12 illustrates the difference in the tracking errors
when GA is used and when the controller is tuned manually.

It is clear that although the difference is small, the use of a
GA results in better tracking errors. Tracking errors change
smoothly, which has good impacts on the motors. Figure 13
shows the difference in the DO performance. It is very clear
that the errors in disturbance estimation errors are smaller
when GA is used. On the other hand, the input torques are
almost identical except at the beginning, as it appears in
Fig. 14.

The classical PD control can solve the problem of
uncertainties with a small tracking error only ifKp is chosen
high enough (around 1500) to compensate for the errors in
the estimation of the dynamics, a high value of Kp results in
a better disturbance rejection. However the gain that can be
used in a PD controller has limitations due to manipulator
structure flexibility and actuator time delays. Therefor, the
previous gain is not reachable. We design the PD controller
gains as follows: Kp = 70I2×2 and Kv = 30I2×2. The
tracking errors of the PD controller is not even close to our
controller errors, as shown in Figs. 15 and 16.

Fig. 16 Tracking errors of the
PD controller and the proposed
controller for link 2
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6 Conclusion

In this paper, an underwater robotic manipulator control
system with full-state feedback is developed for trajectory
tracking task. The considered system has n-DOF, and
it is subjected to hydrodynamic forces, caused by the
difference between the water current velocity and the
manipulator velocity. The controller is designed based on
two approaches, the adaptive NN approach and the DO
approach. Since this system suffers of a high level of
uncertainties, an adaptive NN is used to compensate for
the uncertain parts of the system dynamics as in [20]. The
effects of the water flow are considered as an external
disturbance. A DO is applied to approximate it, as in [24].
In order to tune the parameters of the proposed controller,
an evolutionary computation based approach in the form
of a GA is used. The parameters of the controller are
tuned using the created GA. The efficiency of the controller
proposed is checked by MATLAB based simulation studies,
which has been run for 60 seconds. It is verified that the
control system tuned by the GA can achieve the assigned
tracking task effectively. The tracking error stays within a
very small error band. It is thus verified that NN can solve
the uncertainties problem and guarantee good performance
with a small approximation error.

To show the efficiency of our controller, we compared
it with PD controller. The results obtained show that the
tracking errors of our controller are about twenty times less
than tracking errors of PD controller.

The performance of the GA-tuned controller is compared
with one that is tuned manually, in terms of the achieved
tracking errors and the disturbance estimation errors. The
comparison results have shown that GA can provide the near
optimal values for controller parameters and this leads to
smaller errors. The only disadvantage of using GA is the
slow convergence rate, which we intend to alleviate in future
work.

This research has also shown that the DO technique
used with on-land robotic manipulators can be used
equally effectively in the design of a DO for underwater
manipulators.

In this work, we have assumed that we have sufficiently
comprehensive information about the manipulator and its
operational environment to enable us to design a controller
that will ensure satisfactory performance. However, in
reality, the parameters of the underwater environment may
vary considerably. It is our intention to verify the robustness
of the performance of the controller experimentally under
such variations. It is our future work to build a laboratory
environment for such experimental studies.

Acknowledgments This work was supported by the National Natural
Science Foundation of China under Grant 61873298 the Beijing
Natural Science Foundation under Grant 4172041.

Appendix : The proof of the system stability

To prove the stability of the considered system under the
designed controller, we consider the Lyapunov function in
Eq. 23 and take its time derivative to get:

V̇ = −eT
1 K1e1 + eT

1 e2 + 1

2
eT
2 Ṁce2 + 1

2
eT
2 Mcė2 + f̃ T

T
˙̃

fT

+
N∑

i=1

W̃T
i ψ−1

i
˙̃

Wi (42)

Substituting Eq. 15 and 22 in Eq. 42 results in:

V̇ = −eT
1 K1e1 + eT

1 e2 + 1

2
eT
2 Ṁce2 + eT

2 [−e1 − K2e2

+ Ccα + ŴT �(h) + f̂T − Ccx2 − WT �(h) − fT

]

+ f̃ T
T

˙̃
fT +

N∑
i=1

W̃T
i ψ−1

i
˙̃

Wi (43)

V̇ = −eT
1 K1e1 − eT

2 K2e2 + 1

2
eT
2 (Ṁc − 2Cc)e2

+eT
2

[
W̃T �(h)+f̃T

]
+f̃ T

T
˙̃

fT +
N∑

i=1

W̃T
i ψ−1

i
˙̃

Wi (44)

1
2e

T
2 (Ṁc − 2Cc)e2 = 0 because Ṁc − 2Cc is a skew

symmetric matrix. Substituting Eq. 21 in 44 yields:

V̇ = −eT
1 K1e1 − eT

2 K2e2 + eT
2

[
W̃T �(h) + f̃T

]
− f̃ T

T BM−1
c f̃T

+f̃ T
T BM−1

c W�(h) − f̃ T
T ḟT +

N∑
i=1

W̃T
i ψ−1

i
˙̃

Wi (45)

We have W̃i = Ŵi − Wi , then we can write

N∑
i=1

W̃T
i ψ−1

i
˙̃

Wi = −
N∑

i=1

W̃T
i [�i(h)e2,i + γi |e2|Ŵi]

+
N∑

i=1

W̃T
i ψ−1

i Ẇi (46)

Substituting in Eq. 45 results in:

V̇ ≤ − eT
1 K1e1 − eT

2 K2e2 + eT
2 f̃T − f̃ T

T BM−1
c f̃T − f̃ T

T ḟT

+ f̃ T
T BM−1

c W�(h) −
N∑

i=1

W̃T
i γi |e2|Ŵi (47)

We have :

−eT
2 f̃T ≤ 1

2
‖e2‖2 + 1

2
‖f̃T ‖2 (48)

−f̃ T
T ḟT ≤ 1

2
f̃ T

T f̃T + 1

2
ξ2 (49)
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f̃ T
T BM−1

c W�(h) ≤ 1

2
‖BMc‖2‖f̃T ‖2

+1

2

N∑
i=1

‖Wi‖2‖�i(h)‖2 (50)

−
N∑

i=1

W̃T
i γi |e2|Ŵi ≤ 1

2
eT
2 e2+1

8

N∑
i=1

γ 2
i

(
‖W̃i‖2 − ‖Wi‖2

)2
(51)

According to Proposition 1, we can write:

‖W̃i‖ ≤ εi

γi

+ ‖Wi‖ = d (52)

For the activation function of the RBF NN, there is a
constant ε > 0 where ‖�i(h)‖ ≤ ε, i = 1, 2, . . . , N .
Substituting Eqs. 48–52 in Eq. 47 results in:

V̇ ≤ − eT
1 K1e1 − eT

2 (K2 − In×n)e2 + 1

2
ξ2

− f̃ T
T

(
−‖BM−1

c ‖2 + 2

2
In×n + BM−1

c

)
f̃T

−
n∑

i=1

γ 2
i

4
‖Wi‖2‖W̃i‖2 +

n∑
i=1

γ 2
i

8

(
‖Wi‖4 + d4

)
≤ − aV + b (53)

where

b =
n∑

i=0

γi + ε2

2
‖Wi‖2 +

n∑
i=0

γ 2
i

8

(
‖Wi‖4 + d4

)
+ 1

2
ξ2

a = min

(
2λmin(K1),

2λmin(K2 − In×n)

λmax(M)
,

2λmin

(
BM−1

c −
(
1 + 1

2
‖BM−1

c ‖2
)

In×n

)
,

min
i=1,2,..,n

(
γ 2
i ‖Wi‖2

2λmax(ψ
−1
i )

))
(54)

In order to guarantee a positive value of a, the gain matrices
K1, K2 and �(e2) are designed to guarantee the following
conditions:

λmin(K1) > 0, λmin

(
BM−1

c −
(
1 + 1

2
‖BM−1

c ‖2
)

In×n

)
> 0,

λmin (K2 − In×n) > 0 (55)

Multiply both sides of Eq. 53 with eat to get:

d

dt

(
V eat

) ≤ beat (56)

Integrating Eq. 56 over the interval [0, t] yields:

V ≤ V (0) + b

a
(57)

Since all terms of Lyapunov function (23) are positive, for
e1 we can write:

1

2
‖e1‖2 ≤ V (0) + b

a
→ ‖e1‖ ≤ 2(

√
V (0) + b

a
) = √

S

(58)

The other error signals boundedness can be proved in the
same way. Thus the stability of this system is proved.
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